## Formulas worksheet

Here is a full formulary by subject Motion in Two and Three Dimensions. By understanding each equation, you will be able to solve any problem that you may find at this level.

Click on the icon    to export them to any external compatible program.

### Horizontal Launch

#### Equation of position in rectilinear uniform motion -x-axis

$x={x}_{0}+v\cdot t$

#### Position equation in free fall

$y=\mathrm{H}-\frac{1}{2}g{t}^{2}$

#### Equation of speed in free fall

$v=-g\cdot t$

#### Equation of acceleration on the Earth surface

$a=-g$

#### Equation of acceleration in uniform rectilinear motion

$a=0$

#### Equation of velocity in uniform rectilinear motion

$v={v}_{0}=\text{cte}$

### Projectile Motion

#### Equation of position x-axis

$x={v}_{x}\cdot t={v}_{0}·\mathrm{cos}\left(\alpha \right)·t$

#### Equation of position y-axis

$y=\mathrm{H}+{\mathrm{v}}_{0\mathrm{y}}·\mathrm{t}-\frac{1}{2}·g·{t}^{2}=\mathrm{H}+{\mathrm{v}}_{0}·\mathrm{sin}\left(\mathrm{\alpha }\right)·\mathrm{t}-\frac{1}{2}·g·{t}^{2}$

#### Equation of velocity x-axis

${v}_{x}={v}_{0x}={v}_{0}·\mathrm{cos}\left(\alpha \right)$

#### Equation of velocity y-axis

${v}_{y}={v}_{0y}-g\cdot t={v}_{0}·\mathrm{sin}\left(\alpha \right)-g\cdot t$

#### Equation of acceleration in the x-axis

${a}_{x}=0$

#### Equation of acceleration in the y-axis

${a}_{y}=-g$

### Angular Quantities

#### Linear space - angular space relationship

$s=\phi ·R$

#### Average angular velocity

${\omega }_{a}=\frac{∆\phi }{∆t}=\frac{{\phi }_{f}-{\phi }_{i}}{{t}_{f}-{t}_{i}}$

#### Angular velocity

$\omega =\underset{∆t\to 0}{\mathrm{lim}}\frac{∆\phi }{∆t}=\frac{d\phi }{dt}$

#### Average angular acceleration

${\alpha }_{a}=\frac{∆\omega }{∆t}=\frac{{\omega }_{f}-{\omega }_{i}}{{t}_{f}-{t}_{i}}$

#### Angular acceleration

$\alpha =\underset{∆t\to 0}{\mathrm{lim}}\frac{∆\omega }{∆t}=\frac{d\omega }{dt}$

#### Normal acceleration equation (u.c.m. and u.a.c.m.)

${a}_{n}=\frac{{v}^{2}}{R}={\omega }^{2}·R$

#### Tangential acceleration - angular acceleration relationship

${a}_{t}=\alpha ·R$

#### Linear velocity - angular velocity relationship

$v=\omega ·R$

### Uniform Circular Motion (U.C.M.)

#### Position vector in circular motion

$\stackrel{\to }{r}=x·\stackrel{\to }{i}+y·\stackrel{\to }{j}=R·\mathrm{cos}\left(\phi \right)·\stackrel{\to }{i}+R·\mathrm{sin}\left(\phi \right)·\stackrel{\to }{j}$

#### Equation of tangential acceleration (u.c.m.)

${a}_{t}=0$

#### Angular velocity in u.c.m.

$\omega =\text{constant}$

#### Angular acceleration (u.c.m.)

$\alpha =0$

### Equations of Uniform Circular Motion (U.C.M.)

#### Angular position in u.c.m.

$\phi ={\phi }_{0}+\omega ·t$

#### Angular velocity in u.c.m.

$\omega =\text{constant}$

#### Angular acceleration (u.c.m.)

$\alpha =0$

#### Frequency in uniform circular motion (u.c.m.)

$f=\frac{\omega }{2·\pi }$

#### Relationship angular velocity - period - frequency in u.c.m.

$\omega =\frac{2·\pi }{T}=2·\pi ·f$

### Uniform Circular Motion (U.C.M.) Graphs

#### Angular position in u.c.m.

$\phi ={\phi }_{0}+\omega ·t$

#### Angular velocity in u.c.m.

$\omega =\text{constant}$

#### Angular acceleration (u.c.m.)

$\alpha =0$

### Non-Uniform Circular Motion

#### Position vector in circular motion

$\stackrel{\to }{r}=x·\stackrel{\to }{i}+y·\stackrel{\to }{j}=R·\mathrm{cos}\left(\phi \right)·\stackrel{\to }{i}+R·\mathrm{sin}\left(\phi \right)·\stackrel{\to }{j}$

#### Angular position in non-u.c.m.

$\phi ={\phi }_{0}+\omega ·t+\frac{1}{2}·\alpha ·{t}^{2}$

#### Angular velocity in non-u.c.m.

$\omega ={\omega }_{0}+\alpha ·t$

#### Angular acceleration in non-u.c.m.

$\alpha =\text{constant}$

### Equations of Non-Uniform Circular Motion

#### Angular position in non-u.c.m.

$\phi ={\phi }_{0}+\omega ·t+\frac{1}{2}·\alpha ·{t}^{2}$

#### Angular velocity in non-u.c.m.

$\omega ={\omega }_{0}+\alpha ·t$

#### Angular acceleration in non-u.c.m.

$\alpha =\text{constant}$

### Non-Uniform Circular Motion Graphs

#### Angular position in non-u.c.m.

$\phi ={\phi }_{0}+\omega ·t+\frac{1}{2}·\alpha ·{t}^{2}$

#### Angular velocity in non-u.c.m.

$\omega ={\omega }_{0}+\alpha ·t$

#### Angular acceleration in non-u.c.m.

$\alpha =\text{constant}$